How Far Can We Go Beyond Linear Cryptanalysis?

T. Baignères P. Junod S. Vaudenay

ASIACRYPT 2004

Outline

- Introduction
- Optimal distinguisher between two random sources
 - General case
 - One source following a uniform distribution
 - Source of random bit strings
 - Statistical distinguishers
- Optimal distinguisher between two random oracles
 - Beyond linear probabilities and linear expressions
 - Beyond the piling-up lemma
 - From distinguishers to key-recovery attacks
- 4 Conclusion

Optimal distinguisher between two random sources Optimal distinguisher between two random oracles Conclusion

Introduction

Original Motivation

To give a generalization of linear cryptanalysis.

Result

The paper turns out to propose a very general statistical framework which can be used to construct and study optimal distinguishers, and to generalize the fundamental concepts behind linear cryptanalysis.

- Kaliski and Robshaw used multiple linear approximations,
- Vaudenay proposed the χ^2 attack, where a cipher can simply be considered as a black box,
- Harpes, Kramer, and Massey replaced linear expressions with I/O sums,
- Harpes and Massey considered partition pairs of the input and output spaces of the cipher,
- More recently, Junod and Vaudenay considered linear cryptanalysis in a purely statistical framework.

- Kaliski and Robshaw used multiple linear approximations,
- Vaudenay proposed the χ^2 attack, where a cipher can simply be considered as a black box,
- Harpes, Kramer, and Massey replaced linear expressions with I/O sums,
- Harpes and Massey considered partition pairs of the input and output spaces of the cipher,
- More recently, Junod and Vaudenay considered linear cryptanalysis in a purely statistical framework.

- Kaliski and Robshaw used multiple linear approximations,
- Vaudenay proposed the χ^2 attack, where a cipher can simply be considered as a black box,
- Harpes, Kramer, and Massey replaced linear expressions with I/O sums,
- Harpes and Massey considered partition pairs of the input and output spaces of the cipher,
- More recently, Junod and Vaudenay considered linear cryptanalysis in a purely statistical framework.

- Kaliski and Robshaw used multiple linear approximations,
- Vaudenay proposed the χ^2 attack, where a cipher can simply be considered as a black box,
- Harpes, Kramer, and Massey replaced linear expressions with I/O sums,
- Harpes and Massey considered partition pairs of the input and output spaces of the cipher,
- More recently, Junod and Vaudenay considered linear cryptanalysis in a purely statistical framework.

- Kaliski and Robshaw used multiple linear approximations,
- Vaudenay proposed the χ^2 attack, where a cipher can simply be considered as a black box,
- Harpes, Kramer, and Massey replaced linear expressions with I/O sums,
- Harpes and Massey considered partition pairs of the input and output spaces of the cipher,
- More recently, Junod and Vaudenay considered linear cryptanalysis in a purely statistical framework.

- Kaliski and Robshaw used multiple linear approximations,
- Vaudenay proposed the χ^2 attack, where a cipher can simply be considered as a black box,
- Harpes, Kramer, and Massey replaced linear expressions with I/O sums,
- Harpes and Massey considered partition pairs of the input and output spaces of the cipher,
- More recently, Junod and Vaudenay considered linear cryptanalysis in a purely statistical framework.

and at CRYPTO'04

- Biryukov, De Cannière, and Quisquater used multiple
- and Courtois showed how a cipher that was designed to

and at CRYPTO'04 ...

- Biryukov, De Cannière, and Quisquater used multiple linear approximations in order to reduce attack complexities against DES,
- and Courtois showed how a cipher that was designed to resist LC could be broken by his bi-linear cryptanalysis.

and at CRYPTO'04 ...

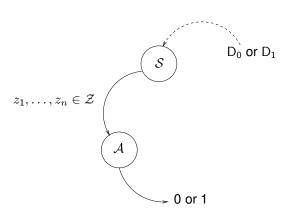
- Biryukov, De Cannière, and Quisquater used multiple linear approximations in order to reduce attack complexities against DES,
- and Courtois showed how a cipher that was designed to resist LC could be broken by his bi-linear cryptanalysis.

General case One source following a uniform distribution Source of random bit strings

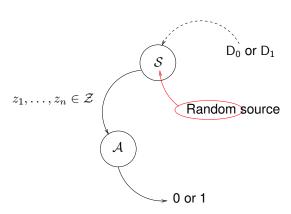
Outline

- Introduction
- Optimal distinguisher between two random sources
 - General case
 - One source following a uniform distribution
 - Source of random bit strings
 - Statistical distinguishers
- Optimal distinguisher between two random oracles
 - Beyond linear probabilities and linear expressions
 - Beyond the piling-up lemma
 - From distinguishers to key-recovery attacks
- 4 Conclusion

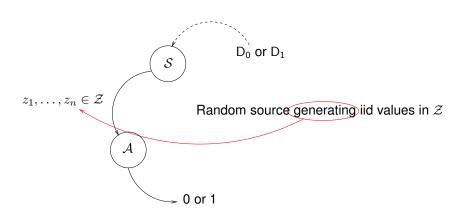
One source following a uniform distribution Source of random bit strings Statistical distinguishers



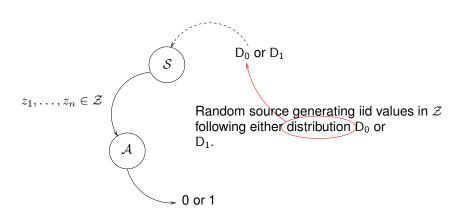
One source following a uniform distribution Source of random bit strings Statistical distinguishers



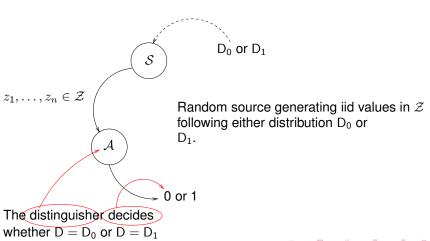
One source following a uniform distribution Source of random bit strings Statistical distinguishers



One source following a uniform distribution Source of random bit strings Statistical distinguishers

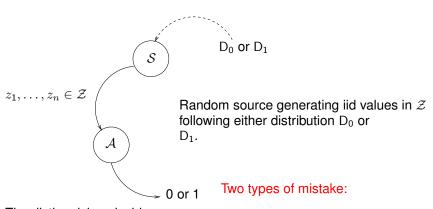


One source following a uniform distribution Source of random bit strings Statistical distinguishers



One source following a uniform distributior Source of random bit strings Statistical distinguishers

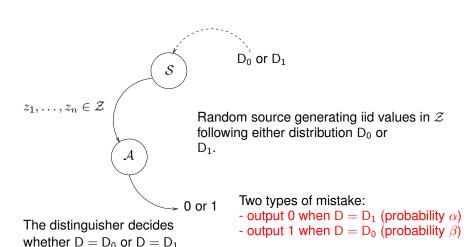
General case (1)



The distinguisher decides whether $D = D_0$ or $D = D_1$

One source following a uniform distribution Source of random bit strings Statistical distinguishers

General case (1)



T. Baignères, P. Junod, S. Vaudenay

How Far Can We Go Beyond Linear Cryptanalysis?

Do or Da

One source following a uniform distribution Source of random bit strings Statistical distinguishers

General case (1)

 $z_1,\ldots,z_n\in\mathcal{Z}$

Random source generating iid values in \mathcal{Z} following either distribution D_0 or D_1 .

The distinguisher decides

whether $D = D_0$ or $D = D_1$

Two types of mistake:

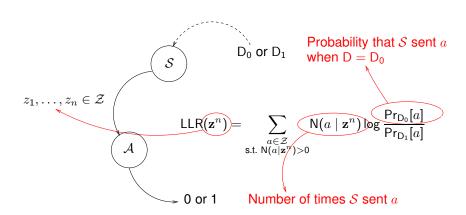
- output 0 when $D = D_1$ (probability α)
- output 1 when $D = D_0$ (probability β)

 \mathcal{S}

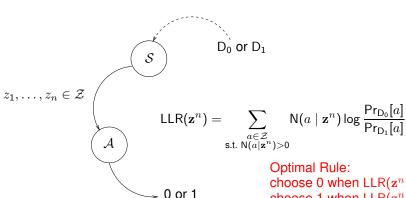
One source following a uniform distribution Source of random bit strings Statistical distinguishers



One source following a uniform distribution Source of random bit strings Statistical distinguishers



General case (2)



choose 0 when LLR(\mathbf{z}^n) > 0 choose 1 when LLR(\mathbf{z}^n) < 0

This minimizes $P_e \Rightarrow$ optimal distinguisher (aka Neyman-Pearson lemma)

One source following a uniform distribution Source of random bit strings Statistical distinguishers

General case (3)

For a given P_e, how many queries does the distinguisher need?

Theorem

- Z_1, \ldots, Z_n are iid, following distribution $D \in \{D_0, D_1\}$,
- ullet D₀ is close to D₁, i.e., $\Pr_{\mathsf{D}_0}[z] \Pr_{\mathsf{D}_1}[z] = \epsilon_z \ll 1$

$$n = rac{d}{\displaystyle\sum rac{\epsilon_z^2}{2}}$$
 with $P_e \approx 1 - \Phi\left(rac{\sqrt{d}}{2}
ight)$

$$\in \mathbb{Z}^{|P|Z}$$

$$\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2}u^2} du$$
.

One source following a uniform distribution Source of random bit strings Statistical distinguishers

General case (3)

For a given P_e, how many queries does the distinguisher need?

Theorem

- Z_1, \ldots, Z_n are iid, following distribution $D \in \{D_0, D_1\}$,
- $\bullet~$ $\mathrm{D_0}$ is close to $\mathrm{D_1},$ i.e., $\mathrm{Pr}_{\,\mathrm{D_0}}\left[z\right]-\mathrm{Pr}_{\,\mathrm{D_1}}\left[z\right]=\epsilon_z\ll1,$

$$n = \frac{d}{\sum_{z \in \mathcal{Z}} \frac{\epsilon_z^2}{p_z}} \quad \text{with} \quad \mathsf{P_e} \approx 1 - \Phi\left(\frac{\sqrt{d}}{2}\right) \; .$$

$$\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2}u^2} du$$

One source following a uniform distribution Source of random bit strings Statistical distinguishers

General case (3)

For a given P_e, how many queries does the distinguisher need?

Theorem

- Z_1, \ldots, Z_n are iid, following distribution $D \in \{D_0, D_1\}$,
- D₀ is close to D₁, i.e., $\Pr_{D_0}[z] \Pr_{D_1}[z] = \epsilon_z \ll 1$,

$$n = \frac{d}{\sum_{z \in \mathcal{Z}} \frac{\epsilon_z^2}{p_z}} \quad \text{with} \quad \mathsf{P_e} \approx 1 - \Phi\left(\frac{\sqrt{d}}{2}\right) \; .$$

$$\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2}u^2} du$$

One source following a uniform distribution Source of random bit strings Statistical distinguishers

General case (3)

For a given P_e, how many queries does the distinguisher need?

Theorem

- Z_1, \ldots, Z_n are iid, following distribution $D \in \{D_0, D_1\}$,
- D₀ is close to D₁, i.e., $\Pr_{D_0}[z] \Pr_{D_1}[z] = \epsilon_z \ll 1$,

$$n = \frac{d}{\displaystyle\sum_{z \in \mathcal{Z}} \frac{\epsilon_z^2}{p_z}} \qquad \text{with} \qquad \mathsf{P_e} \approx 1 - \Phi\left(\frac{\sqrt{d}}{2}\right) \ .$$

$$\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2}u^2} du$$
.

Outline

- Introduction
- Optimal distinguisher between two random sources
 - General case
 - One source following a uniform distribution
 - Source of random bit strings
 - Statistical distinguishers
- Optimal distinguisher between two random oracles
 - Beyond linear probabilities and linear expressions
 - Beyond the piling-up lemma
 - From distinguishers to key-recovery attacks
- 4 Conclusion

General case

One source following a uniform distribution

Source of random bit strings

Statistical distinguishers

One source following a uniform distribution

Squared Euclidean Imbalance (SEI)

If D₁ is the uniform distribution (i.e., $\Pr_{D_1}[z] = p_z = \frac{1}{|\mathcal{Z}|}$), we define the Squared Euclidean Imbalance (SEI):

$$\Delta(\mathsf{D}_0) = |\mathcal{Z}| \sum_{z \in \mathcal{Z}} \epsilon_z^2$$
 .

Corollary

$$n = rac{d}{\Delta({
m D}_0)} \qquad {
m with} \qquad {
m P}_{
m e} pprox 1 - \Phi\left(rac{\sqrt{d}}{2}
ight) \ .$$

 \Rightarrow The complexity of distinguishing D₀ from D₁ can be measured by means of the SEI.

In a χ^2 cryptanalysis, the adversary does not need to know D₁, i.e., what exactly happens in the inner transformations of the cipher (which can therefore be considered as a *black box*).

- Complexity of a χ^2 attack $ightarrow O(1/\Delta(\mathsf{D}_0))$
- Not worse (up to a constant term) than an optimal distinguisher.

In a χ^2 cryptanalysis, the adversary does not need to know D₁, i.e., what exactly happens in the inner transformations of the cipher (which can therefore be considered as a *black box*).

- Complexity of a χ^2 attack $\to O(1/\Delta(D_0))$
- Not worse (up to a constant term) than an optimal distinguisher.

In a χ^2 cryptanalysis, the adversary does not need to know D₁, i.e., what exactly happens in the inner transformations of the cipher (which can therefore be considered as a *black box*).

- Complexity of a χ^2 attack $\to O(1/\Delta(D_0))$
- Not worse (up to a constant term) than an optimal distinguisher.

In a χ^2 cryptanalysis, the adversary does not need to know D₁, i.e., what exactly happens in the inner transformations of the cipher (which can therefore be considered as a *black box*).

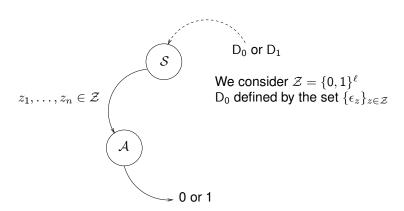
- Complexity of a χ^2 attack $\to O(1/\Delta(D_0))$
- Not worse (up to a constant term) than an optimal distinguisher.

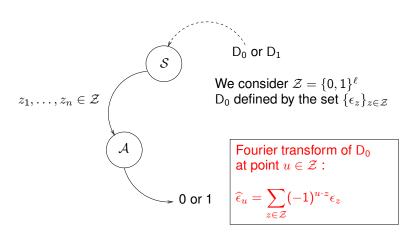
General case
One source following a uniform distribution
Source of random bit strings
Statistical distinguishers

Outline

- Introduction
- Optimal distinguisher between two random sources
 - General case
 - One source following a uniform distribution
 - Source of random bit strings
 - Statistical distinguishers
- Optimal distinguisher between two random oracles
 - Beyond linear probabilities and linear expressions
 - Beyond the piling-up lemma
 - From distinguishers to key-recovery attacks
- Conclusion

Source of random bit strings (1)





Properties of the SEI (using the Fourier transform):

• When B is a random bit, recall the linear probability is $LP(B) = (2 Pr [B = 0] - 1)^2$. Then,

 $\bullet \ \ \text{with } \mathsf{LP}^{\mathcal{L}}_{\mathsf{max}} = \max_{w \in \mathcal{Z} \setminus \{0\}} \mathsf{LP}(w \cdot Z),$

 $\Delta(\mathsf{D}_0) \leq (2^\ell - 1)\mathsf{LP}_{\mathsf{max}}^{\mathsf{Z}}$

Properties of the SEI (using the Fourier transform):

• When B is a random bit, recall the linear probability is $LP(B) = (2 Pr [B = 0] - 1)^2$. Then,

ullet with $\mathsf{LP}^{\scriptscriptstyle L}_{\mathsf{max}} = \max_{w \in \mathcal{Z} \setminus \{0\}} \mathsf{LP}(w \cdot Z),$

 $\Delta(\mathsf{D}_0) \leq (2^\ell - 1)\mathsf{LP}_{\mathsf{max}}^{\mathsf{Z}}$

Properties of the SEI (using the Fourier transform):

• When B is a random bit, recall the linear probability is $LP(B) = (2 Pr [B = 0] - 1)^2$. Then,

$$\begin{split} \bullet \ \ & \Delta(\mathsf{D}_0) = \sum_{w \in \mathcal{Z} \setminus \{0\}} \mathsf{LP}(w \cdot Z) \\ \bullet \ \ & \text{with } \mathsf{LP}^Z_{\mathsf{max}} = \max_{w \in \mathcal{Z} \setminus \{0\}} \mathsf{LP}(w \cdot Z), \end{split}$$

$$\Delta(\mathsf{D}_0) \leq (2^\ell - 1) \mathsf{LP}_{\mathsf{max}}^Z \ .$$

Properties of the SEI (using the Fourier transform):

• When B is a random bit, recall the linear probability is $LP(B) = (2 Pr [B = 0] - 1)^2$. Then,

$$\Delta(\mathsf{D}_0) \leq (2^\ell - 1)\mathsf{LP}^Z_{\mathsf{max}}$$
 .

Properties of the SEI (using the Fourier transform):

• When B is a random bit, recall the linear probability is $LP(B) = (2 Pr [B = 0] - 1)^2$. Then,

$$\text{with } \mathsf{LP}^Z_{\mathsf{max}} = \max_{w \in \mathcal{Z} \backslash \{0\}} \mathsf{LP}(w \cdot Z),$$

$$\Delta(\mathsf{D}_0) \leq (2^\ell - 1)\mathsf{LP}_{\mathsf{max}}^Z$$
.

General case
One source following a uniform distribution
Source of random bit strings
Statistical distinguishers

Outline

- Introduction
- Optimal distinguisher between two random sources
 - General case
 - One source following a uniform distribution
 - Source of random bit strings
 - Statistical distinguishers
- Optimal distinguisher between two random oracles
 - Beyond linear probabilities and linear expressions
 - Beyond the piling-up lemma
 - From distinguishers to key-recovery attacks
- 4 Conclusion

We know how to distinguish distributions in $\{0,1\}^{\ell}$ of *small cardinality* (i.e., ℓ is small).

What if the source generates variables in $\{0,1\}^L$ where L is large?

Solution

reduce the sample space by means of a projection:

$$h: \{0,1\}^L \longrightarrow \mathcal{Z}$$
.

• $Z = h(S) \in \mathcal{Z}$ follows either D_0 or D_1 .

But how should we choose the projection h?!? (This may be where cryptanalysis becomes an art !)

We know how to distinguish distributions in $\{0,1\}^{\ell}$ of *small cardinality* (i.e., ℓ is small).

What if the source generates variables in $\{0,1\}^L$ where L is *large*?

Solution

reduce the sample space by means of a projection:

$$h: \{0,1\}^L \longrightarrow \mathcal{Z}$$
.

• $Z = h(S) \in \mathcal{Z}$ follows either D_0 or D_1 .

But how should we choose the projection h?!? (This may be where cryptanalysis becomes an art !)

We know how to distinguish distributions in $\{0,1\}^{\ell}$ of *small cardinality* (i.e., ℓ is small).

What if the source generates variables in $\{0,1\}^L$ where L is *large*?

Solution:

• reduce the sample space by means of a projection:

$$h: \{0,1\}^L \longrightarrow \mathcal{Z}$$
.

• $Z = h(S) \in \mathcal{Z}$ follows either D_0 or D_1 .

But how should we choose the projection h?!? (This may be where cryptanalysis becomes an art !)

We know how to distinguish distributions in $\{0,1\}^{\ell}$ of *small cardinality* (i.e., ℓ is small).

What if the source generates variables in $\{0,1\}^L$ where L is *large*?

Solution:

• reduce the sample space by means of a projection:

$$h: \{0,1\}^L \longrightarrow \mathcal{Z}$$
.

• $Z = h(S) \in \mathcal{Z}$ follows either D_0 or D_1 .

But how should we choose the projection h?!? (This may be where cryptanalysis becomes an art!)

First example of a statistical distinguisher

For some non-zero $a \in \{0,1\}^L$

$$h: \{0,1\}^L \longrightarrow \mathcal{Z} = \{0,1\}$$

 $S \longmapsto h(S) = a \cdot S$.

This is a linear distinguisher.

We note that
$$\Delta(h(S)) = \mathsf{LP}(a \cdot S) \leq \mathsf{LP}_{\mathsf{max}}^S$$
.

Modern ciphers have a bounded LP_{max}^{S} \Rightarrow protected against *linear cryptanalysis*.

First example of a statistical distinguisher

For some non-zero $a \in \{0,1\}^L$

$$h: \{0,1\}^L \longrightarrow \mathcal{Z} = \{0,1\}$$

 $S \longmapsto h(S) = a \cdot S$.

This is a linear distinguisher.

We note that
$$\Delta(h(S)) = \mathsf{LP}(a \cdot S) \leq \mathsf{LP}_{\mathsf{max}}^S$$

Modern ciphers have a bounded LP_{max}^{S} \Rightarrow protected against *linear cryptanalysis*.

First example of a statistical distinguisher

For some non-zero $a \in \{0,1\}^L$

$$h: \{0,1\}^L \longrightarrow \mathcal{Z} = \{0,1\}$$

 $S \longmapsto h(S) = a \cdot S$.

This is a linear distinguisher.

We note that
$$\Delta(h(S)) = \mathsf{LP}(a \cdot S) \leq \mathsf{LP}_{\mathsf{max}}^S$$
.

Modern ciphers have a bounded LP $_{max}^{S}$ \Rightarrow protected against *linear cryptanalysis*.

Second example of a statistical distinguisher

$$\begin{array}{ccc} h: & \{0,1\}^L & \longrightarrow & \mathcal{Z} = \{0,1\}^\ell \\ S & \longmapsto & h(S) \end{array}.$$

where h is GF (2)-linear and $\ell \neq 1$ is small.

Theorem

$$\Delta(h(S)) \leq (2^\ell - 1)\mathsf{LP}_{\mathsf{max}}^S$$
 .

Ciphers protected against linear cryptanalysis (bounded LP_{max}^S) \Rightarrow somewhat protected against several generalizations!

General case
One source following a uniform distribution
Source of random bit strings
Statistical distinguishers

Second example of a statistical distinguisher

$$\begin{array}{cccc} h: & \{0,1\}^L & \longrightarrow & \mathcal{Z} = \{0,1\}^\ell \\ S & \longmapsto & h(S) \end{array}.$$

where h is GF (2)-linear and $\ell \neq 1$ is small.

Theorem

$$\Delta(h(S)) \leq (2^{\ell} - 1) \mathsf{LP}_{\mathsf{max}}^{S} .$$

Ciphers protected against linear cryptanalysis (bounded LP_{max}^S) \Rightarrow somewhat protected against several generalizations!

Second example of a statistical distinguisher

$$\begin{array}{cccc} h: & \{0,1\}^L & \longrightarrow & \mathcal{Z} = \{0,1\}^\ell \\ S & \longmapsto & h(S) \end{array}.$$

where h is GF (2)-linear and $\ell \neq 1$ is small.

Theorem

$$\Delta(h(S)) \leq (2^{\ell} - 1) \mathsf{LP}_{\mathsf{max}}^{S} .$$

Ciphers protected against linear cryptanalysis (bounded LP_{max}^{S}) \Rightarrow somewhat protected against several generalizations!

Is it possible to find a distinguisher

- with a high advantage,
- even though the value of LP^S_{max} is small?

Practical examples exist. For example

- Jakobsen and Knudsen's interpolation attack (where quadratic functions are used),
- Courtois' bi-linear cryptanalysis.

- impossible to break with a linear distinguisher,
- trivially broken by a (well-chosen) non-linear distinguisher.

Is it possible to find a distinguisher

- with a high advantage,
- ullet even though the value of LP $_{\max}^S$ is small?

Practical examples exist. For example

- Jakobsen and Knudsen's interpolation attack (where quadratic functions are used),
- Courtois' bi-linear cryptanalysis.

- impossible to break with a linear distinguisher,
- trivially broken by a (well-chosen) non-linear distinguisher.

Is it possible to find a distinguisher

- with a high advantage,
- even though the value of LP^S_{max} is small?

Practical examples exist. For example

- Jakobsen and Knudsen's interpolation attack (where quadratic functions are used),
- Courtois' bi-linear cryptanalysis.

- impossible to break with a linear distinguisher,
- trivially broken by a (well-chosen) non-linear distinguisher.

Is it possible to find a distinguisher

- with a high advantage,
- even though the value of LP^S_{max} is small?

Practical examples exist. For example

- Jakobsen and Knudsen's interpolation attack (where quadratic functions are used),
- Courtois' bi-linear cryptanalysis.

- impossible to break with a linear distinguisher,
- trivially broken by a (well-chosen) non-linear distinguisher.

Is it possible to find a distinguisher

- with a high advantage,
- even though the value of LP^S_{max} is small?

Practical examples exist. For example

- Jakobsen and Knudsen's interpolation attack (where quadratic functions are used),
- Courtois' bi-linear cryptanalysis.

- impossible to break with a linear distinguisher,
- trivially broken by a (well-chosen) non-linear distinguisher.

Is it possible to find a distinguisher

- with a high advantage,
- even though the value of LP^S_{max} is small?

Practical examples exist. For example

- Jakobsen and Knudsen's interpolation attack (where quadratic functions are used),
- Courtois' bi-linear cryptanalysis.

- impossible to break with a linear distinguisher,
- trivially broken by a (well-chosen) non-linear distinguisher.

Is it possible to find a distinguisher

- with a high advantage,
- even though the value of LP^S_{max} is small?

Practical examples exist. For example

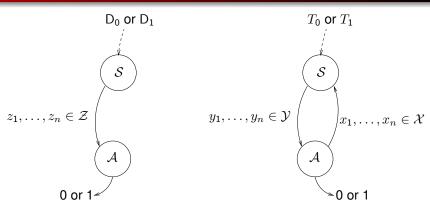
- Jakobsen and Knudsen's interpolation attack (where quadratic functions are used),
- Courtois' bi-linear cryptanalysis.

- impossible to break with a linear distinguisher,
- trivially broken by a (well-chosen) non-linear distinguisher.

Outline

- Introduction
- Optimal distinguisher between two random sources
 - General case
 - One source following a uniform distribution
 - Source of random bit strings
 - Statistical distinguishers
- Optimal distinguisher between two random oracles
 - Beyond linear probabilities and linear expressions
 - Beyond the piling-up lemma
 - From distinguishers to key-recovery attacks
- 4 Conclusion

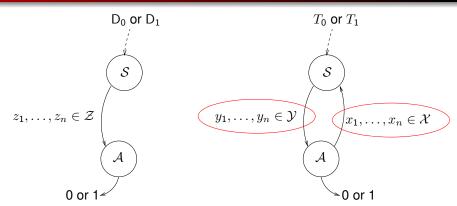
Beyond linear probabilities and linear expressions (1)



We know how to distinguish random sources.

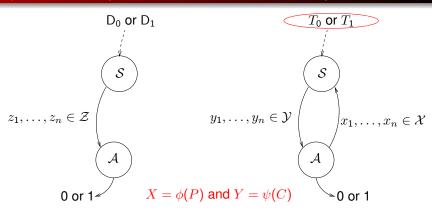
→ what about random oracles?

Beyond linear probabilities and linear expressions (1)



 $Z \in \mathcal{Z}$ becomes a couple of random variables $(X,Y) \in \mathcal{X} \times \mathcal{Y}$.

Beyond linear probabilities and linear expressions (1)



known plaintext attack $\to P \sim$ uniform distrib. $\to X \sim$ uniform distrib.

Distribution of Y defined by a transition matrix:

$$[T]_{x,y} = \Pr[Y = y \mid X = x]$$

Beyond linear probabilities and linear expressions (2)

Transition Matrix

$$[T]_{x,y} = \Pr[Y = y \mid X = x]$$
.

When $T = T_1$, Y is uniformly distributed.

Bias Matrix

$$B = T_0 - T_1 .$$

Link between bias matrix and SEI

$$\Delta(D_0) = \frac{|\mathcal{Y}|}{|\mathcal{X}|} \parallel B \parallel_2^2.$$

Beyond linear probabilities and linear expressions (2)

Transition Matrix

$$[T]_{x,y} = \Pr[Y = y \mid X = x]$$
.

When $T = T_1$, Y is uniformly distributed.

Bias Matrix

$$B = T_0 - T_1.$$

Link between bias matrix and SEI

$$\Delta(\mathsf{D}_0) = \frac{|\mathcal{Y}|}{|\mathcal{X}|} \parallel B \parallel_2^2$$

Beyond linear probabilities and linear expressions (2)

Transition Matrix

$$[T]_{x,y} = \Pr[Y = y \mid X = x]$$
.

When $T = T_1$, Y is uniformly distributed.

Bias Matrix

$$B = T_0 - T_1.$$

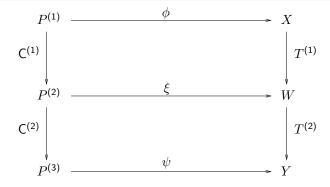
Link between bias matrix and SEI

$$\Delta(\mathsf{D}_0) = \frac{|\mathcal{Y}|}{|\mathcal{X}|} \parallel B \parallel_2^2 \ .$$

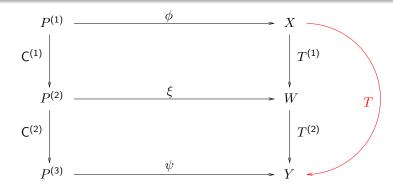
Outline

- Introduction
- Optimal distinguisher between two random sources
 - General case
 - One source following a uniform distribution
 - Source of random bit strings
 - Statistical distinguishers
- Optimal distinguisher between two random oracles
 - Beyond linear probabilities and linear expressions
 - Beyond the piling-up lemma
 - From distinguishers to key-recovery attacks
- 4 Conclusion

Piling-up transition matrices



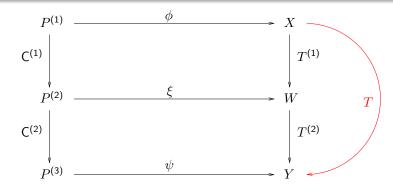
Piling-up transition matrices



If $X \leftrightarrow W \leftrightarrow Y$ is a Markov chain

$$T = T^{(1)} \times T^{(2)}$$

Piling-up transition matrices



If $X \leftrightarrow W \leftrightarrow Y$ is a Markov chain

$$T = T^{(1)} \times T^{(2)} \leadsto B = B^{(1)} \times B^{(2)} \leadsto ||B||_2 \le ||B^{(1)}||_2 \times ||B^{(2)}||_2$$

Outline

- Introduction
- Optimal distinguisher between two random sources
 - General case
 - One source following a uniform distribution
 - Source of random bit strings
 - Statistical distinguishers
- Optimal distinguisher between two random oracles
 - Beyond linear probabilities and linear expressions
 - Beyond the piling-up lemma
 - From distinguishers to key-recovery attacks
- 4 Conclusion

Key recovery attacks

The framework can be adapted to key recovery.

In the paper we show how to build an optimal key ranking procedure that recovers a k bits key provided that the number of samples n is s.t.

$$n \geq \frac{4k \log 2}{\Delta(D_0)}$$
.

This formula was used to estimate the complexity of attacks against E0 (don't miss this morning's last talk!!).

Key recovery attacks

The framework can be adapted to key recovery.

In the paper we show how to build an optimal key ranking procedure that recovers a k bits key provided that the number of samples n is s.t.

$$n \geq \frac{4k \log 2}{\Delta(D_0)}.$$

This formula was used to estimate the complexity of attacks against E0 (don't miss this morning's last talk!!).

Key recovery attacks

The framework can be adapted to key recovery.

In the paper we show how to build an optimal key ranking procedure that recovers a k bits key provided that the number of samples n is s.t.

$$n \geq \frac{4k \log 2}{\Delta(D_0)}.$$

This formula was used to estimate the complexity of attacks against E0 (don't miss this morning's last talk!!).

- We defined a rigorous statistical framework in order to interpret LC and its generalizations in a unified way.
- Modern block ciphers are proven resistant against LC.
- This resistance extends to linear generalizations of LC;
- ...but definitely not to non-linear ones!

- We defined a rigorous statistical framework in order to interpret LC and its generalizations in a unified way.
- Modern block ciphers are proven resistant against LC.
- This resistance extends to linear generalizations of LC,
- ...but definitely not to non-linear ones!

- We defined a rigorous statistical framework in order to interpret LC and its generalizations in a unified way.
- Modern block ciphers are proven resistant against LC.
- This resistance extends to linear generalizations of LC,
- ... but definitely not to non-linear ones!

- We defined a rigorous statistical framework in order to interpret LC and its generalizations in a unified way.
- Modern block ciphers are proven resistant against LC.
- This resistance extends to linear generalizations of LC,
- ...but definitely not to non-linear ones!

- We defined a rigorous statistical framework in order to interpret LC and its generalizations in a unified way.
- Modern block ciphers are proven resistant against LC.
- This resistance extends to linear generalizations of LC,
- ...but definitely not to non-linear ones!

